Glossary – Gas Furnace

Gas Furnace Fully Explained

A furnace is a device used for heating. The name derives from Latin fornax, oven.

Gas Furnace Diagram

In American English and Canadian English, the term furnace on its own is generally used to describe household heating systems based on a central furnace (known either as a boiler or a heater in British English), and sometimes as a synonym for kiln, a device used in the production of ceramics. In British English the term furnace is used exclusively to mean industrial furnaces which are used for many things, such as the extraction of metal from ore (smelting) or in oil refineries and other chemical plants, for example as the heat source for fractional distillation columns.

The term furnace can also refer to a direct fired heater, used in boiler applications in cemical industries or for providing heat to chemical reactions for processes like cracking, and is part of the standard English names for many metallurgical furnaces worldwide.

The heat energy to fuel a furnace may be supplied directly by fuel combustion, by electricity such as the electric arc furnace, or through induction heating in induction furnaces.

Houlsehold Furnaces

A household furnace is a major appliance that is permanently installed to provide heat to an interior space through intermediary fluid movement, which may be air, steam, or hot water. The most common fuel source for modern furnaces in the United States is natural gas; other common fuel sources include LPG (liquefied petroleum gas), fuel oil, coal or wood. In some cases electrical resistance heating is used as the source of heat, especially where the cost of electricity is low.

Combustion furnaces always need to be vented to the outside. Traditionally, this was through a chimney, which tends to expel heat along with the exhaust. Modern high-efficiency furnaces can be 98% efficient and operate without a chimney. The small amount of waste gas and heat are mechanically ventilated through a small tube through the side or roof of the house.

Modern household furnaces are classified as condensing or non-condensing based on their efficiency in extracting heat from the exhaust gases. Furnaces with efficiencies greater than approximately 89% extract so much heat from the exhaust that water vapor in the exhaust condenses; they are referred to as condensing furnaces. Such furnaces must be designed to avoid the corrosion that this highly acidic condensate might cause and may need to include a condensate pump to remove the accumulated water. Condensing furnaces can typically deliver heating savings of 20%-35% assuming the old furnace was in the 60% Annual Fuel Utilization Efficiency (AFUE) range.

Modern furnace components

The components of a natural gas or propane fired forced air furnace can be divided into three categories.

  1. The burners, heat exchanger, draft inducer, and venting.
  2. The controls and safety devices.
  3. The blower and air movement.

The flame originates at the burners and is drawn into the heat exchanger by the negative pressure produced by the draft inducer. The hot gases produced by the combustion of the flame pass through the chambers of the heat exchanger and heat the metal walls of the heat exchanger. The gases cool as they transfer the heat to the heat exchanger and are at about 120 °F (50 °C) as they exit on a high efficiency furnace. The cooled gases then enter the draft inducer blower and are pushed into the venting pipes. The exhaust gases then are directed out of the house through the vent pipes.

The controls include the gas valve, ignition control, ignitor, flame sensor, transformer, limit control, blower control board, and flame roll out switch. The transformer provides 24 volts of electricity to power the controls. 24 volts is applied to the thermostat that is installed in the living space.

The thermostat is basically an automatic switch that closes and completes the electrical circuit when the room temperature drops below the heat setting. This then allows 24 volts to the circuit board which initiates the heat sequence. The circuit board has a relay that closes to power up the motor on the draft inducer blower. Then the circuit board ignitor relay is energized which sends 120 volts to the hot surface ignitor and makes it glow bright and get extremely hot.

Next the gas valve relay in the circuit board is energized. This allows voltage to the gas valve and energizes a solenoid coil in the gas valve which opens the valve to allow gas to flow to the burners. The gas flows into the burners and is ignited by the hot surface ignitor. The ignition control circuit board applies an AC voltage to the flame sensor which is just a stainless steel rod. An interesting thing occurs inside a burning flame, which is called ionization. That is, free electrons are produced which can conduct electricity through the flame itself. The electrons will normally flow from the flame sensor, through the flame when present, and back to ground through the grounded burners.

The ignition system must prove that a flame is present to continue the gas flow, or if there’s no flame, then shut off the gas flow through the gas valve to prevent a possible explosion. It also must not be fooled into thinking there is a flame present by a flame sensor that is touching the ground from being broken or bent. The way it does this is by a diode effect where the sensor surface area is less than 10% of the ground surface area. This produces a half-wave of electrical current from each full wave. The ignition control circuit detects the half-wave to determine if the sensor is merely touching ground. If the ignition control receives this half wave signal from the flame sensor then combustion will continue.

Now the circuit board timer counts a determined amount of time and energizes the blower relay. This relay powers up the blower motor and air is then pushed over the heat exchanger where it removes the heat from the hot metal and enters the ductwork to go to the various rooms in the house. The limit control is a safety device that will open the electrical circuit to the ignition control and stop the gas flow if the furnace overheats. The flame roll-out switch does the same thing if the flame was rolling out of the heat exchanger instead of being completely induced into it by the draft inducer.

The blower creates a negative pressure on the intake side which draws air into the ductwork return air system and blows the air out through the heat exchanger and then into supply air ductwork to distribute throughout the home.

Heat distribution

The furnace transfers heat to the living space of the building through an intermediary distribution system. If the distribution is through hot water (or other fluid) or through steam, then the furnace is more commonly termed a boiler. One advantage of a boiler is that the furnace can provide hot water for bathing and washing dishes, rather than requiring a separate water heater. One disadvantage to this type of application is when the boiler breaks down, both heating and domestic hot water is not available.

Air convection heating systems have been in use for over a century, but the older systems relied on a passive air circulation system where the greater density of cooler air caused it to sink into the furnace, and the lesser density of the warmed air caused it to rise in the ductwork, the two forces acting together to drive air circulation in a system termed “gravity-feed; the layout of the ducts and furnace was optimized for short, large ducts and caused the furnace to be referred to as an “octopus” furnace.

By comparison, most modern “warm air” furnaces typically use a fan to circulate air to the rooms of house and pull cooler air back to the furnace for reheating; this is called forced-air heat. Because the fan easily overcomes the resistance of the ductwork, the arrangement of ducts can be far more flexible than the octopus of old. In American practice, separate ducts collect cool air to be returned to the furnace. At the furnace, cool air passes into the furnace, usually through an air filter, through the blower, then through the heat exchanger of the furnace, whence it is blown throughout the building. One major advantage of this type of system is that it also enables easy installation of central air conditioning by simply adding a cooling coil at the exhaust of the furnace.

Air is circulated through ductwork, which may be made of sheet metal or plastic “flex” duct and insulated or uninsulated. Unless the ducts and plenum have been sealed using mastic or foil duct tape, the ductwork is likely to have a high leakage of conditioned air, possibly into unconditioned spaces. Another cause of wasted energy is the installation of ductwork in unheated areas, such as attics and crawl spaces; or ductwork of air conditioning systems in attics in warm climates.

The following rare but difficult-to-diagnose failure can occur. If the temperature inside the furnace exceeds a maximum threshold, a safety mechanism with a thermostat will shut the furnace down. A symptom of this failure is that the furnace repeatedly shuts down before the house reaches the desired temperature; this is commonly referred to as the furnace “riding the high limit switch”. This condition commonly occurs if the temperature setting of the high limit thermostat is set too close to the normal operating temperature of the furnace. Another situation may occur if a humidifier is incorrectly installed on the furnace and the duct which directs a portion of the humidified air back into the furnace is too large. The solution is to reduce the diameter of the cross-feed tube, or install a baffle that reduces the volume of re-fed air.

0
    0
    Your Cart
    Your cart is emptyReturn to Shop